Mean value theorem for continuous vector functions by smooth approximations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Best Approximations by Smooth Functions

THEOREM 1.1 (U. Sattes). Let r > 2 and g E C[O, l]\B$,‘. Then f”EB$’ is a best approximation to g, in L” (such a best approximation necessari/J) exisrs) if and only if there exists a subinterual (a, /?) c IO. 1 I and a positilse integer M > r + 1 for which the following conditions hold (i) f”l,n.ll, is a Perfect spline of degree r with exactly) M ~ r -1 knots arzd I.f”““(s)l = I a. e. on [u,pI....

متن کامل

The First Mean Value Theorem for Integrals

For simplicity, we use the following convention: X is a non empty set, S is a σ-field of subsets of X, M is a σ-measure on S, f , g are partial functions from X to R, and E is an element of S. One can prove the following three propositions: (1) If for every element x of X such that x ∈ dom f holds f(x) ≤ g(x), then g − f is non-negative. (2) For every set Y and for every partial function f from...

متن کامل

Optimal Approximations by Piecewise Smooth Functions and Associated Variational Problems

The purpose of this paper is to introduce and study the most basic properties of three new variational problems which are suggested by applications to computer vision. In computer vision, a fundamental problem is to appropriately decompose the domain R of a function g ( x , y) of two variables. To explain this problem, we have to start by describing the physical situation whch produces images: ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Letters

سال: 2004

ISSN: 0893-9659

DOI: 10.1016/j.aml.2004.06.007